KDM Analytics

Working Together to Build Confidence

Knowledge Discovery Metamodel (KDM)

Software Development Kit

KDM SDK is an Eclipse ™ plugin
which provides a set of tools for
working with KDM. KDM SDK
v.2.0 consists of the following
components:

» KDM graphical wizard which
allows opening existing KDM XMI
files, browsing them, editing them,
including drag-and-drop
restructuring, editing of the
attributes, adding deleting model
elements, etc. and saving models in
XMI.

* Comprehensive set of examples
for the KDM specification

« KDM XMI 2.1 export facility;
exports KDM in latest version of
OMG XMI 2.1

» KDM model management
factory; a set of Java interface
definitions and classes to create
KDM models, query KDM models
and export/import them in XML
Metadata Interchange (XMI) format

FOR MORE
INFORMATION
CONTACT
NORM RAJALA

norm@kdmanalytics.com
(613) 627-1011

www.kdmanalytics.com

Knowledge Discovery Metamodel (KDM) is the OMG’s publicly available
specification (http://www.omg.org). KDM provides a common intermediate
representation of existing software systems and their operating environ-
ments. It is a vendor-neutral representation that is independent of a program-
ming language and platform. It is designed as the OMG’s foundation for the
Software Modernization and Software Assurance. KDM is a MOF meta-
model that defines XMI interchange format between existing tools that work

with existing software. It also defines the API on which next generation
tools for modernization and software assurance can be built .

= Java - HelloWorld.kdm - Eclipse SDK =%
File Edit Mavigate Search Project Rum Kdm Editor ‘Window SVW Help
e $ 0 Q- BEG- S @ P A e = (8 e |
| Package Explorer 51 Hiararchy: = O || [5 Hellawarld.kem,xmi.xml &) BuildExample. xmi.kdm &4 HellotWorld kdm 5 S
= esource Seb
IE i Examples =] 5:5‘ platform: fresource ExamplesiHelloworld. kdm
&l BuildExample.kdm =4 Segment HelloWorld Example
'52 BuildExample, xmi,kdm = 4 Code Model Helloworld
2] Classh.c 1= 4 Compilation Unit hello.c
W ClassD kdm 1=+ 4 Callable Unit main
& ClassDxmi, kdm 4 Sourcs Ref C
& CommentExample.kdm 4 Entry Flow
5:2 CormrmentExanmple. xmi.kdm [#- 4 Signature main
|=| ConceptualExample.hla (= Action Element al
-4 ConceptualExample.kdm < Source Ref C
z '52 ConceptualExample. s, kdm <4 Yalue "Hella, World!\n"
H @ DataExample java < Rears .
&) DataExample kdm 4 call Mew Chid P < Attribute
14 DataExample. xmi.kdm 4 Con Mew Siling ¥ 4% Annotation
1 DataschemaExample. kdm i i#- 4 Language Unit .,‘;" g @Taggsd Ref
r:_ DataSchemaExample.sql = 4 Inventory Model He AR ‘}(‘f Tt
& DataSchemaExample. xmi.kdm < Source File helle ™ =
gk DirectivesExample.kdm - S .
[i st | ut
B e Selection |Parent | List | Tree | Table 015 -
3 i T = = Copy I =5
] oispateh.c Problems | Javadoc | Declaration | = = | & il
: 'gg DispatchExample. kdm i —
@ DispakchExample. xmi.kdm Eropeity % Delete &
2 :_Q Examples_01032007, eds.zip Erom, ctian Element a1
D) Examples_01032007.2ip ?terem’pe validate R
@ Examples_18032007, eds.zip 2] proehelophronsin
L&) Exceptions kdm =
-8 i T Run As L
[Exceptions, xmi.kdm lrz ‘
AR, el Fabiin A S 12

KDM SDK from KDM Analytics is a “‘springboard” for adopting KDM.
The product supports the publicly available KDM 1.0 specification.

The product is aimed at developers, researchers, technologists as well as
trainers and students. The product will help them understand the KDM
specification, facilitate design of the mapping from proprietary internal rep-
resentation into KDM and jumpstart development of the KDM tools.

Why KDM ?

KDM provides a common intermediate representation of existing software systems and their operating environments.
The goal is to dramatically increase the interoperability between existing maintenance, evolution, assessment and
modernization tools, to fully support today’s increasingly complex and interconnected software systems. It defines an
ontology for describing the key aspects of knowledge related to the various facets of enterprise software. KDM support
means investment into the KDM ecosystem - a growing open-standard based cohesive community of tool vendors, ser-
vice providers, and commercial components.

KDM represents entire enterprise software systems, not just
code. It provides a high-fidelity intermediate representation
which can be used for performing static analysis of existing
software systems. KDM facilitates incremental analysis of
software systems. The initial KDM system knowledge is
obtained directly from the software system. This knowledge
is augmented through incremental analysis of the initial
KDM, producing more pieces of knowledge by operating
entirely within the KDM technology space. The steps of the
knowledge extraction process can be performed by tools,
and may involve the analyst.

c et Infrastructure layer
Abstractions layer ohecpiun

KDM is the uniform language and platform independent rep- Frogram Elements layer
resentation. Its extensibility mechanism allows addition of Resource layer

domain, application and implementation specific knowledge.
KDM packages are arranged into the following four layers:

Infrastructure Layer consists of the Core, kdm, and Source packages which provide a small common core for all other
packages, the inventory model of the artifacts of the existing system and full traceability between the meta-model
elements as links back to the source code of the artifacts, as well as the uniform extensibility mechanism. The Core
package determines several of patterns that are reused by other KDM packages.

Program Elements Layer consists of the Code and Action packages.
Code package represents programming elements as determined by programming languages, for example data
types, procedures, classes, methods, variables, etc. This package is similar in purpose to the Common Application
Meta-model (CAM) from another OMG specification, called Enterprise Application Integration (EAI). KDM Code
package provides greater level of detail and is seamlessly integrated with the architecturally significant views of the
software system.
Action package captures the low level behaviour elements of applications, including detailed control- and data flow
between statements. Code and Action package in combination provide a high-fidelity intermediate representation of
each component of the enterprise software system.

Resource Layer represents the operational environment of the existing software system.
Platform package represents the operating environment of the software, related to the operating system, middle-
ware, etc. including the control flows between components as they are determined by the runtime platform.
Ulpackage represents the knowledge related to the user interfaces of the existing software system.
Event package represents the knowledge related to events and state-transition behaviour of the existing software
system.
Data package represents the artifacts related to persistent data, such as indexed files, relational databases, and
other kinds of data storage. The Data package is aligned with another OMG specification, called Common Ware-
house Meta-model (CWM).

Abstractions Layer represents domain and application abstractions.
Conceptual package represent business domain knowledge and business rules, insofar as this information can be
mined from existing applications. These packages are aligned with another OMG specification, called Semantics of
Business Vocabulary and Rules (SBVR).
Structure package describes the meta-model elements for representing the logical organization of the software sys-
tem into subsystems, layers and components.
Build package represents the engineering view of the software system

For more information contact
Norm Rajala

norm@kdmanalytics.com
(613) 627-1011

