
There exist multiple analytics tools for source code analysis and binary analysis. Each tool that helps understand and evolve existing
software has unique strengths, but also unique gaps. As mentioned in the recent comparison of static analysis tools performed at NSA:
''Organizations trying to automate the process of testing software for vulnerabilities have no choice but to deploy a multitude of tools''.

The following factors determine the need for deep semantic integration of source code analysis tools in the fields of software assurance,
software security and software quality.

 Diversity of implementation languages

 Diversity of runtime platforms for which applications are developed

 Analysis of applications that use application frameworks, COTS components, services

 The need to add the architecture perspective to analysis of the existing software system

 The need to combine static analysis with architecture analysis and metrics

 The need to integrate static and dynamic analysis of systems

 The need to correlate software development management data from various sources

Current source code analysis tools offer little interoperability. In order
to obtain a cohesive view of the security application, customers often
need to do painful point-to-point integrations between these tools.

Lack of interoperability between source code analysis tools make it
extremely difficult to focus community effort at developing the com-
mon reusable content for software assurance. Indeed, the content of
each source code analysis tool is locked into a proprietary ''silo'', and
each vendor is separately working on developing such content, such as
the precise definitions of software weaknesses. Each source code
analysis tool provides own proprietary implementations of the so-
called ''checkers'', specific to the design of the proprietary analysis
engine. Each ''siloed'' source code analysis tool becomes disconnected
from any common reusable content created by the community effort,
such as security standards, policies, protection profiles, or Common
Weakness Enumeration (CWE).

The Knowledge Discovery Metamodel addresses in part the integration challenge by offering a common language-independent
intermediate representation. Such intermediate representation allows logical separation of the analysis components from the parsing com-
ponents and promotes a plug-and-play environment which dramatically improves the power of the individual source code analysis tools This
allows significant reuse of the technologies and expertize at the analysis level. The common ontology determines the level at which tools
can share knowledge about existing system, while any additional data may need to remain tool-specific.

Learn more about the design of the Knowledge Discovery Metamodel

About Software Assurance Ecosystems

Learn more about software assurance and source code analysis tools:

 Build Security In site
 Wikipedia article on Software Assurance
 The Anatomy of a ''software analytics'' tool.

1/2

http://cwe.mitre.org/
http://cwe.mitre.org/
http://872.db6.mwp.accessdomain.com/resources/knowledge-discovery-metamodel/
http://www.kdmanalytics.com/kdm/alm_silos.png
http://buildsecurityin.us-cert.gov
http://en.wikipedia.org/wiki/Software_Assurance
http://www.kdmanalytics.com/swa/analysis_tool_details.html

About Software Assurance Ecosystems (cont’d)

At the semantic integration level collaborating tools need to share
the same ontology related to the application. KDM provides an
extensive ontology related to existing software applications. Common
ontology allows developing reusable software assurance content in the
form of real machine-readable artifacts that will drive source code
analysis tools. Interoperability between source code analysis tools and
common reusable content for software assurance are the main
objectives of the Software Assurance Ecosystem.

The Knowledge Discovery Metamodel defines the software development
database format which can be used for software asset management and
software asset tracking. The KDM-based repository for a given software
system can be populated by multiple software code analysis tools. KDM
also allows incremental multi-phase analysis of the same software sys-
tem by multiple tools, where for the advanced analysis phases the KDM
repository is both the input as well as the output of the analysis. This
provides better continuity and repeatability to source code analysis
compared to using a proprietary internal representation of a single tool.

In order to play within the KDM ecosystem, existing tools need to
implement ''bridges'' between their internal models and the Knowledge
Discovery Metamodel. Compliance criteria are defined
in the Knowledge Discovery Metamodel specification.

While the ''KDM Ecosystem'' is a broad community of tools, components
and services built on the foundation of shared ontology, offering
knowledge-based integration, the Software Assurance Ecosystem
leverages the semantic integration of source code analysis tools offered
by the Knowledge Discovery Metamodel and uses the common ontology
to provide a common foundation for developing reusable machine-
readable content for Software Assurance. In order to achieve this, the
Software Assurance uses another standard from the Object Manage-
ment Group (OMG), the Semantics of Business Vocabulary and Business
Rules (SBVR). SBVR and KDM are designed as two parts of a unique
OMG Technology Stack for software analytics related to existing
software systems.

The Software Assurance Ecosystem brings together three separate
communities :

 the formal methods community, that creates machine-readable
software assurance content that can drive source code analysis tools

 the reverse engineering community, that has extensive expertise in
delivering software analytics related to large, diverse enterprise
software systems

 source code analysis community, that provides capabilities for auto-
matic static analysis of software

2/2

http://www.kdmanalytics.com/swa/swa_content.png
http://www.kdmanalytics.com/swa/swa_ecosystem.png
http://872.db6.mwp.accessdomain.com/resources/semantics-of-bus-vocabulary-bus-rules-sbvr/
http://872.db6.mwp.accessdomain.com/resources/semantics-of-bus-vocabulary-bus-rules-sbvr/

